Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(12): 5325-5329, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38488224

RESUMO

Uranium, as the main fuel of today's nuclear energy, is crucial to the development of nuclear energy. Therefore, the development of low-cost and powerful adsorbents is very important for the removal or recovery of uranium from uranium-containing solutions. Herein, we report the synthesis of a cheap phosphite-derived polymer for such use. Under visible-light irradiation, this phosphite-derived polymer was found to enable selective adsorption of uranium with an adsorption capacity as high as 1030 mg/g, suggesting its great potential in handling nuclear waste.

2.
Adv Sci (Weinh) ; : e2307630, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441389

RESUMO

Regulation of excessive inflammation and impaired cell proliferation is crucial for healing diabetic wounds. Although plant-to-mammalian regulation offers effective approaches for chronic wound management, the development of a potent plant-based therapeutic presents challenges. This study aims to validate the efficacy of turmeric-derived nanoparticles (TDNPs) loaded with natural bioactive compounds. TDNPs can alleviate oxidative stress, promote fibroblast proliferation and migration, and reprogram macrophage polarization. Restoration of the fibroblast-macrophage communication network by TDNPs stimulates cellular regeneration, in turn enhancing diabetic wound healing. To address diabetic wound management, TDNPs are loaded in an ultralight-weight, high swelling ratio, breathable aerogel (AG) constructed with cellulose nanofibers and sodium alginate backbones to obtain TDNPs@AG (TAG). TAG features wound shape-customized accessibility, water-adaptable tissue adhesiveness, and capacity for sustained release of TDNPs, exhibiting outstanding performance in facilitating in vivo diabetic wound healing. This study highlights the potential of TDNPs in regenerative medicine and their applicability as a promising solution for wound healing in clinical settings.

3.
Bioact Mater ; 36: 62-82, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440323

RESUMO

Tendon-bone interface injuries pose a significant challenge in tissue regeneration, necessitating innovative approaches. Hydrogels with integrated supportive features and controlled release of therapeutic agents have emerged as promising candidates for the treatment of such injuries. In this study, we aimed to develop a temperature-sensitive composite hydrogel capable of providing sustained release of magnesium ions (Mg2+). We synthesized magnesium-Procyanidin coordinated metal polyphenol nanoparticles (Mg-PC) through a self-assembly process and integrated them into a two-component hydrogel. The hydrogel was composed of dopamine-modified hyaluronic acid (Dop-HA) and F127. To ensure controlled release and mitigate the "burst release" effect of Mg2+, we covalently crosslinked the Mg-PC nanoparticles through coordination bonds with the catechol moiety within the hydrogel. This crosslinking strategy extended the release window of Mg2+ concentrations for up to 56 days. The resulting hydrogel (Mg-PC@Dop-HA/F127) exhibited favorable properties, including injectability, thermosensitivity and shape adaptability, making it suitable for injection and adaptation to irregularly shaped supraspinatus implantation sites. Furthermore, the hydrogel sustained the release of Mg2+ and Procyanidins, which attracted mesenchymal stem and progenitor cells, alleviated inflammation, and promoted macrophage polarization towards the M2 phenotype. Additionally, it enhanced collagen synthesis and mineralization, facilitating the repair of the tendon-bone interface. By incorporating multilevel metal phenolic networks (MPN) to control ion release, these hybridized hydrogels can be customized for various biomedical applications.

4.
Chem Rec ; 24(3): e202300361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362667

RESUMO

Smart textile fabrics have been widely investigated and used in flexible wearable electronics because of their unique structure, flexibility and breathability, which are highly desirable with integrated multifunctionality. Recent years have witnessed the rapid development of textile fiber-based flexible wearable devices. However, the pristine textile fibers still can't meet the high standards for practical flexible wearable devices, which calls for the development of some effective modification strategies. In this review, we summarize the recent advances in the flexible wearable devices based on the textile fibers, putting special emphasis on the design and modifications of textile fibers. In addition, the applications of textile fibers in various fields and the critical role of textile fibers are also systematically discussed, which include the supercapacitors, sensors, triboelectric nanogenerators, thermoelectrics, and other self-powered electronic devices. Finally, the main challenges that should be overcome and some effective solutions are also manifested, which will guide the future development of more effective textile fiber-based flexible wearable devices.

5.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257389

RESUMO

Jujube residue is an abundant and low-cost dietary fiber resource, but its relatively lower hydration and functional properties limit its utilization as an ingredient of functional food. Thus, cellulase and hemicellulase hydrolysis, enzymatic hydrolysis assisted by phosphate grafting (EPG), and enzymatic hydrolysis assisted by acrylate grafting (EAG) were used to improve the functional properties of jujube residue dietary fiber (JRDF) in this study. The results evidenced that these modifications all increased the porosity of the microstructure of JRDF and increased the soluble fiber content, surface area, and hydration properties, but reduced its brightness (p < 0.05). Moreover, JRDF modified by enzymolysis combined with acrylate grafting offered the highest extractable polyphenol content, oil, sodium cholate, and nitrite ion sorption abilities. Meanwhile, JRDF modified via enzymolysis assisted by phosphate grafting showed the highest soluble fiber content (23.53 g∙100 g-1), water-retention ability (12.84 g∙g-1), viscosity (9.37 cP), water-swelling volume (10.80 mL∙g-1), and sorption ability of copper (II) and lead (II) ions. Alternatively, JRDF modified with cellulase hydrolysis alone exhibited the highest glucose adsorption capacity (21.9 g∙100 g-1) at pH 7.0. These results indicate that EPG is an effective way to improve the hypolipidemic effects of JRDF, while EAG is a good choice to enhance its hydration and hypoglycemic properties.


Assuntos
Celulase , Ziziphus , Fosfatos , Fibras na Dieta , Acrilatos , Água
6.
Adv Healthc Mater ; 13(6): e2302690, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37885334

RESUMO

Effectively integrating infection control and osteogenesis to promote infected bone repair is challenging. Herein, injective programmable proanthocyanidin (PC)-coordinated zinc-based composite hydrogels (ipPZCHs) are developed by compositing antimicrobial and antioxidant PC-coordinated zinc oxide (ZnO) microspheres with thioether-grafted sodium alginate (TSA), followed by calcium chloride (CaCl2 ) crosslinking. Responsive to the high endogenous reactive oxygen species (ROS) microenvironment in infected bone defects, the hydrophilicity of TSA can be significantly improved, to trigger the disintegration of ipPZCHs and the fast release of PC-coordinated ZnOs. This together with the easily dissociable PC-Zn2+ coordination induced fast release of antimicrobial zinc (Zn2+ ) with/without silver (Ag+ ) ions from PC-coordinated ZnOs (for Zn2+ , > 100 times that of pure ZnO) guarantees the strong antimicrobial activity of ipPZCHs. The exogenous ROS generated by ZnO and silver nanoparticles during the antimicrobial process further speeds up the disintegration of ipPZCHs, augmenting the antimicrobial efficacy. At the same time, ROS-responsive degradation/disintegration of ipPZCHs vacates space for bone ingrowth. The concurrently released strong antioxidant PC scavenges excess ROS thus enhances the immunomodulatory (in promoting the anti-inflammatory phenotype (M2) polarization of macrophages) and osteoinductive properties of Zn2+ , thus the infected bone repair is effectively promoted via the aforementioned programmable and self-adaptive processes.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Proantocianidinas , Óxido de Zinco , Zinco/farmacologia , Óxido de Zinco/farmacologia , Hidrogéis/farmacologia , Antioxidantes , Proantocianidinas/farmacologia , Espécies Reativas de Oxigênio , Prata/farmacologia
7.
J Zhejiang Univ Sci B ; 24(12): 1174-1179, 2023 Dec 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38057274

RESUMO

Ganoderma lucidum is a mushroom widely used for its edible and medicinal properties. Primary bioactive constituents of G. lucidum are ganoderic triterpenoids (GTs), which exhibit important pharmacological activity. Abscisic acid (ABA), a plant hormone, is associated with plant growth, development, and stress responses. ABA can also affect the growth, metabolism, and physiological activities of different fungi and participates in the regulation of the tetracyclic triterpenes of some plants. Our findings indicated that ABA treatment promoted GT accumulation by regulating the gene expression levels (squalene synthase (sqs), 3-hydroxy-3-methylglutaryl-CoA reductase (hmgr), and lanosterol synthase (ls)), and also activated cytosolic Ca2+ channels. Furthermore, under ABA mediation, exogenous Ca2+ donors and inhibitors directly affected the cytosolic Ca2+ concentration and related gene expression in Ca2+ signaling. Our study also revealed that ABA-mediated cytosolic Ca2+ played a crucial regulatory role in GT biosynthesis, accompanied by antioxidant defense modulation with increasing superoxide dismutase (SOD) activity and ascorbate peroxidase (APX) activity, and the resistance ability of O2•- and glutathione (GSH) contents.


Assuntos
Reishi , Triterpenos , Reishi/metabolismo , Triterpenos/farmacologia , Triterpenos/metabolismo , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo
8.
ACS Appl Mater Interfaces ; 15(44): 50836-50853, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37903387

RESUMO

The latest advancements in cellular bioenergetics have revealed the potential of transferring chemical energy to biological energy for therapeutic applications. Despite efforts, a three-dimensional (3D) scaffold that can induce long-term bioenergetic effects and facilitate tissue regeneration remains a big challenge. Herein, the cellular energetic metabolism promotion ability of l-malate, an important intermediate of the tricarboxylic acid (TCA) cycle, was proved, and a series of bioenergetic porous scaffolds were fabricated by synthesizing poly(diol l-malate) (PDoM) prepolymers via a facial one-pot polycondensation of l-malic acid and aliphatic diols, followed by scaffold fabrication and thermal-cross-linking. The degradation products of the developed PDoM scaffolds can regulate the metabolic microenvironment by entering mitochondria and participating in the TCA cycle to elevate intracellular adenosine triphosphate (ATP) levels, thus promoting the cellular biosynthesis, including the production of collagen type I (Col1a1), fibronectin 1 (Fn1), and actin alpha 2 (Acta2/α-Sma). The porous PDoM scaffold was demonstrated to support the growth of the cocultured mesenchymal stem cells (MSCs) and promote their secretion of bioactive molecules [such as vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1), and basic fibroblast growth factor (bFGF)], and this stem cells-laden scaffold architecture was proved to accelerate wound healing in a critical full-thickness skin defect model on rats.


Assuntos
Malatos , Tecidos Suporte , Ratos , Animais , Malatos/farmacologia , Tecidos Suporte/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
9.
Eur J Pharmacol ; 954: 175868, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37369296

RESUMO

Postmenopausal osteoporosis stems mainly from estrogen deficiency leading to a gut microbiome-dependent disruption of host systemic immunity. However, the underlying mechanisms of estrogen deficiency-induced bone loss remain elusive and novel pharmaceutical intervention strategies for osteoporosis are needed. Here we reveal that ovariectomy (ovx)-induced estrogen deficiency in C57BL/6 mice causes significant disruption of gut microbiota composition, consequently leading to marked destruction of intestinal barrier function and gut leakage. As a result, signals transportation between intestinal microbiota and T cells from the gut to bone marrow is identified to contribute to osteoclastogenesis in ovx mice. Notably, we show that icariside I (GH01), a novel small molecule naturally occurring in Herbal Epimedium, has potential to alleviate or prevent ovx-induced bone loss in mice through regulation of gut-bone signaling axis. We find that GH01 treatment can effectively restore the gut microbiota composition, intestinal barrier function and host immune status markedly altered in ovx mice, thus significantly ameliorating bone loss and osteoporosis. These findings not only provide systematic understanding of the gut-immunity-bone axis-associated pathophysiology of osteoporosis, but also demonstrate the high potential of GH01 for osteoporosis treatment by targeting the gut-bone signaling axis.


Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Humanos , Feminino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/prevenção & controle , Osteoporose Pós-Menopausa/tratamento farmacológico , Osso e Ossos , Estrogênios , Ovariectomia
10.
Chem Rec ; 23(10): e202300097, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37236145

RESUMO

Low-dimensional high-entropy alloy (HEA) nanomaterials are widely employed as electrocatalysts for energy conversion reactions, due to their inherent advantages, including high electron mobility, rich catalytically active site, optimal electronic structure. Moreover, the high-entropy, lattice distortion, and sluggish diffusion effects also enable them to be promising electrocatalysts. A thorough understanding on the structure-activity relationships of low-dimensional HEA catalyst play a huge role in the future pursuit of more efficient electrocatalysts. In this review, we summarize the recent progress of low-dimensional HEA nanomaterials for efficient catalytic energy conversion. By systematically discussing the fundamentals of HEA and properties of low-dimensional nanostructures, we highlight the advantages of low-dimensional HEAs. Subsequently, we also present many low-dimensional HEA catalysts for electrocatalytic reactions, aiming to gain a better understanding on the structure-activity relationship. Finally, a series of upcoming challenges and issues are also thoroughly proposed as well as their future directions.

11.
Dalton Trans ; 52(17): 5399-5417, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37014653

RESUMO

Single-atom catalysts (SACs), affording 100% metal dispersion and maximized metal atom utilization, have recently emerged as a new type of potential catalyst for catalytic reactions, particularly for benzene oxidation to phenol. Their great advantages have stimulated researchers' intensive endeavors toward the development of highly efficient SACs, and various metal SACs are well fabricated for facilitating the catalytic benzene oxidation reaction. Aiming to gain a better understanding of the research progress in SACs for boosting benzene oxidation into phenol in recent years, we herein present a comprehensive review with a particular focus on the roles of metal atoms and supports when used for the catalytic oxidation reactions. Additionally, the applications of many advanced SACs in benzene oxidation reactions and their structure-activity correlation are presented, which include noble-metal SACs and non-noble-metal SACs. Finally, challenges remaining in this research area are discussed and possible future research directions are proposed.

12.
Adv Healthc Mater ; 12(20): e2300303, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36964976

RESUMO

Treatment of infected bone defects is a major clinical challenge; bioactive materials combining sufficient antimicrobial activity and favorable osteogenic ability are urgently needed. In this study, through a facile one-pot hydrothermal reaction of zinc acetate in the presence of tannic acid (TA), with or without silver nitrate (AgNO3 ), is used to synthesize a TA or TA and silver nanoparticles (Ag NPs) bulk-modified zinc oxide (ZnO) (ZnO-TA or ZnO-TA-Ag), which is further composited with zein to fabricate porous microparticulate scaffolds for infected bone defect repair. Bulk TA modification significantly improves the release rate of antibacterial metal ions (Zn2+ release rate is >100 times that of ZnO). Fast and long-lasting (>35 d) Zn2+ and Ag+ release guaranteed sufficient antibacterial capability and excellent osteogenic properties in promoting the osteogenic differentiation of bone marrow mesenchymal stem cells and endogenous citric acid production and mineralization and providing considerable immunomodulatory activity in promoting M2 polarization of macrophages. At the same time, synchronously-released TA could scavenge endogenous reactive oxygen species (ROS) and ROS produced by antibacterial metal ions, effectively balancing antibacterial activity and osteogenesis to sufficiently control infection while protecting the surrounding tissue from damage, thus effectively promoting infected bone defect repair.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Osteogênese , Zinco/farmacologia , Óxido de Zinco/farmacologia , Espécies Reativas de Oxigênio , Taninos/farmacologia , Prata/farmacologia , Antibacterianos/farmacologia , Íons/farmacologia , Anti-Infecciosos/farmacologia , Tecidos Suporte
13.
Bioact Mater ; 20: 93-110, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35633874

RESUMO

The revolutionary role of tissue adhesives in wound closure, tissue sealing, and bleeding control necessitates the development of multifunctional materials capable of effective and scarless healing. In contrast to the use of traditionally utilized toxic oxidative crosslinking initiators (exemplified by sodium periodate and silver nitrate), herein, the natural polyphenolic compound tannic acid (TA) was used to achieve near instantaneous (<25s), hydrogen bond mediated gelation of citrate-based mussel-inspired bioadhesives combining anti-oxidant, anti-inflammatory, and antimicrobial activities (3A-TCMBAs). The resulting materials were self-healing and possessed low swelling ratios (<60%) as well as considerable mechanical strength (up to ∼1.0 MPa), elasticity (elongation ∼2700%), and adhesion (up to 40 kPa). The 3A-TCMBAs showed strong in vitro and in vivo anti-oxidant ability, favorable cytocompatibility and cell migration, as well as photothermal antimicrobial activity against both Staphylococcus aureus and Escherichia coli (>90% bacterial death upon near-infrared (NIR) irradiation). In vivo evaluation in both an infected full-thickness skin wound model and a rat skin incision model demonstrated that 3A-TCMBAs + NIR treatment could promote wound closure and collagen deposition and improve the collagen I/III ratio on wound sites while simultaneously inhibiting the expression of pro-inflammatory cytokines. Further, phased angiogenesis was observed via promotion in the early wound closure phases followed by inhibition and triggering of degradation & remodeling of the extracellular matrix (ECM) in the late stage (supported by phased CD31 (platelet endothelial cell adhesion molecule-1) PDGF (platelet-derived growth factor) and VEGF (vascular endothelial growth factor) expression as well as elevated matrix metalloprotein-9 (MMP-9) expression on day 21), resulting in scarless wound healing. The significant convergence of material and bioactive properties elucidated above warrant further exploration of 3A-TCMBAs as a significant, new class of bioadhesive.

14.
Small ; 19(3): e2205489, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319477

RESUMO

Current diabetic wound treatments remain unsatisfactory due to the lack of a comprehensive strategy that can integrate strong applicability (tissue adhesiveness, shape adaptability, fast self-healability, and facile dressing change) with the initiation and smooth connection of the cascade wound healing processes. Herein, benefiting from the multifaceted bonding ability of tannic acid to metal ions and various polymers, a family of tannin-europium coordination complex crosslinked citrate-based mussel-inspired bioadhesives (TE-CMBAs) are specially developed for diabetic wound healing. TE-CMBAs can gel instantly (< 60 s), possess favorable shape-adaptability, considerable mechanical strengths, high elasticity, considerable wet tissue adhesiveness (≈40 kPa), favorable photothermal antimicrobial activity, excellent anti-oxidant activity, biocompatibility, and angiogenetic property. The reversible hydrogen bond crosslinking and sensitive metal-phenolic coordination also confers TE-CMBAs with self-healability, pH-responsive europium ion and TA releasing properties and on-demand removability upon mixing with borax solution, enabling convenient painless dressing change and the smooth connection of inflammatory microenvironment modulation, angiogenesis promotion, and effective extracellular matrix production leveraging the acidic pH condition of diabetic wounds. This adhesive dressing provides a comprehensive regenerative strategy for diabetic wound management and can be extended to other complicated tissue healing scenarios.


Assuntos
Adesivos , Diabetes Mellitus , Humanos , Adesivos/química , Európio , Cicatrização , Bandagens , Concentração de Íons de Hidrogênio , Hidrogéis/química , Antibacterianos/química
15.
Sensors (Basel) ; 22(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36560357

RESUMO

To solve the problem in which the output power and wavelength of semiconductor lasers in fiber optic sensing systems are easily affected by the drive current and temperature, a high-precision current drive and temperature control system was developed in this study. The embedded system was used to provide a stable drive current for the semiconductor laser through closed-loop negative feedback control; moreover, some measures, such as linear slow-start, current-limiting protection, and electrostatic protection, were adopted to ensure the stability and safety of the laser's operation. A mathematical model of the temperature control system was constructed using mechanism analysis, and model identification was completed using the M sequence and differential evolution (DE) algorithms. Finally, the control rules of the fuzzy proportional integral differentiation (PID) algorithm were optimized through system simulation to make it more suitable for the temperature control system designed in this research, and the accurate control of the working temperature of the semiconductor laser was realized. Experimental results showed that the system could achieve a linearly adjustable drive current in the range of 0-100 mA, with an output current accuracy of 0.01 mA and a temperature control accuracy of up to 0.005 °C.

16.
Adv Sci (Weinh) ; 9(27): e2202684, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35876402

RESUMO

Due to the abuse of antibiotics and the emergence of multidrug resistant microorganisms, medical devices, and related biomaterials are at high risk of microbial infection during use, placing a heavy burden on patients and healthcare systems. Metal-phenolic networks (MPNs), an emerging organic-inorganic hybrid network system developed gradually in recent years, have exhibited excellent multifunctional properties such as anti-inflammatory, antioxidant, and antibacterial properties by making use of the coordination between phenolic ligands and metal ions. Further, MPNs have received widespread attention in antimicrobial infections due to their facile synthesis process, excellent biocompatibility, and excellent antimicrobial properties brought about by polyphenols and metal ions. In this review, different categories of biomaterials based on MPNs (nanoparticles, coatings, capsules, hydrogels) and their fabrication strategies are summarized, and recent research advances in their antimicrobial applications in biomedical fields (e.g., skin repair, bone regeneration, medical devices, etc.) are highlighted.


Assuntos
Anti-Infecciosos , Antioxidantes , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios , Antioxidantes/farmacologia , Materiais Biocompatíveis , Humanos , Hidrogéis , Metais , Fenóis
17.
Inorg Chem ; 61(10): 4533-4540, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35236071

RESUMO

The electrooxidation of ethylene glycol (EG) is of vital significance for the conversion from biomass energy into electrical energy via direct fuel cells. However, the EG oxidation reaction (EGOR) suffers from poor efficiency due to the limitation of high-performance electrocatalysts for cleaving the C-C bonds. Herein, this limitation is successfully addressed by fabricating the doughnut-shaped Pd-Bi2Te3 heterostructured catalyst. Notably, the heterojunction Pd-Bi2Te3 nanocatalyst has been demonstrated to be highly active toward the EGOR with superb activity and durability, in which a mass activity as high as 2420.8 mA mg-1 is achieved in alkaline media, being 1.7 times higher than that of the commercial Pd/C catalyst. Upon combination of experimental results with mechanism studies, it is indicated that the remarkable EGOR performance is attributed to the enlarged active areas that stemmed from the doughnut-like structure, as well as the strong synergistic effect from Pd-Bi2Te3 and Pd. More importantly, the highly electroactive Pd-Bi2Te3 can accelerate charge transfer and boost the oxidation of CO-like intermediates, which are conducive to the enhancement in electrochemical stability.

18.
Environ Sci Pollut Res Int ; 29(13): 19835-19846, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34725755

RESUMO

The reduced graphene oxide supported Zn-doped Bi2MoO6 nanocomposites (ZnxBi2-xMoO6/RGO) are synthesized by an easy one-step solvothermal method for the rapid degradation of ciprofloxacin (CIP). Characterization analyses show that Bi2MoO6 nanosheets are uniformly supported on RGO, for which the agglomeration of Bi2MoO6 is effectively inhibited, leading to more exposure of surface active sites. The degradation rate of Zn0.1Bi1.9MoO6/RGO5 on CIP reached 90% after 120 min of visible light irradiation, which was 10.4 times the rate of unsupported Bi2MoO6. Zn doping and RGO loading synergistically reduce the recombination rate of photogenerated electron-hole pairs and result in the enhanced photocatalytic performance. Compared with previously reported catalysts, Zn0.1Bi1.9MoO6/RGO5 can get higher degradation efficiency with shorter time and less dosage. In addition, after five cycles, the degradation efficiency is maintained at about 85%, showing perfect cycling stability of Zn0.1Bi1.9MoO6/RGO5. Photocatalytic mechanism suggests that the photogenerated •O2- and h+ are main species for degrading CIP based on ZnxBi2-xMoO6/RGO complex.


Assuntos
Ciprofloxacina , Zinco , Bismuto , Domínio Catalítico , Ciprofloxacina/química , Grafite , Molibdênio
19.
Chemosphere ; 286(Pt 3): 131738, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34388437

RESUMO

The removal of toxic and harmful heavy metal contaminants from wastewater is of great importance for global environmental health. The development of efficient photocatalysts is attracting increasing interest with a current focus on material design for improved efficiency. Accordingly, this study aims to optimize the conformation of nanocomposite prepared from a CdS/ZnO heterojunction on reduced graphene oxide (RGO) for boosting the photocatalytic removal of heavy metal contaminants of aqueous systems. Under visible light, the candidate nanocomposites exhibited a range of photocatalytic activity in reducing hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] at room temperature. Among these different nanocomposites, the photocatalytic removal rate constant of Cr(VI) ranged as follows: ZnO/CdS6:5/RGO6 (0.106 min-1) > ZnO/CdS6:5 (0.0630 min-1) > CdS (0.0335 min-1) > ZnO (0.00121 min-1). Moreover, after five cycles of use, the photocatalytic reduction rate of ZnO/CdS6:5/RGO6 was 93.2 %, which signifies its strong re-cycling performance. These results reveal the feasibility of using CdS/ZnO6:5/RGO6 to reduce heavy metal ions from wastewater and provide insights for efficiently removing heavy metal ions without additional chemical trapping agents in the photocatalytic process.


Assuntos
Grafite , Óxido de Zinco , Compostos de Cádmio , Cromo , Sulfetos
20.
Microb Biotechnol ; 15(5): 1324-1338, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34592061

RESUMO

Plastics materials used for food packaging are recalcitrant, leading to a growing global environmental problem, which arouses the attention of environmental protection departments in many countries. Therefore, to meet the increasing demand for sustainable and environment-friendly consumer products, it is necessary for the food industry to develop natural antibacterial materials for food preservation. This review summarizes the common biodegradable natural antimicrobial agents and their applications in food preservation; as well as an overview of five commonly used biodegradable protein-based polymers, such as zein, soy protein isolate, gelatin and whey protein, with special emphasis on the advantages of protein-based biopolymers and their applications in food packaging industry.


Assuntos
Embalagem de Alimentos , Conservação de Alimentos , Antibacterianos/farmacologia , Biopolímeros , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...